취미로PS하는사람

[Analysis] 1. The Real and Complex Number Systems 본문

Math/Analysis

[Analysis] 1. The Real and Complex Number Systems

def_win 2022. 7. 11. 17:42

Section 0. Preview

앞으로 Analysis에서는 PMA 위주로 김김계의 일부분을 섞어 작성할 것이다. 1장에서는 주로 실수가 무엇인지 배운다. 주요 내용은 완비성(completeness, lubp), 유리수로부터 실수를 구축하는 것(데데킨드 컷), 완비순서체는 실수가 유일한 것 정도이다. 복소수도 간략하게 다룬다. 체의 정의와 성질이나 벡터공간에 관한 것은 다른 분야에서 더 formal하게 다룬다고 생각하여 제외했다.

 

Section 1. Ordered Sets

Def 1.1.1 Let $S$ be a set. Order on $S$ is a relation s.t.

(1) $x, y \in S \Rightarrow$ only one of $x<y, x=y, y<x$ holds.

(2) $^\forall x,y,z \in S, x<y, y<z \Rightarrow x<z$

a set with such relation is called ordered set.

 

Def 1.1.2 Let $S$ be an ordered set. $E \subset S$.

if $^\exists \beta \in S$ s.t. $^\forall x \in E, x \leq \beta$, then $E$ is bounded above. $\beta$ is upper bound of $E$.

In same context, define bounded below and lower bound.

 

Def 1.1.3 Let S be an ordered set, $E \subset S$, bdd above. If $^\exists \alpha$ s.t.

(1) $\alpha$, ub of $E$

(2) $r < \alpha \Rightarrow r$, not ub of $E$

Then $\alpha$ is called least ub or supremum. Denote by $\alpha = \sup E$

In same context, define greatest lb = infimum. Denote by $\alpha = \inf E$

 

Def 1.1.4 Let $E \subset S$, $E \neq \phi$, bdd above.

If for every such $E$, $\sup E \in S$, then S has least ub property(lubp).

 

Thm 1.1.1 S, ordered set with lubp. $B \subset S$, $B \neq \phi$, bdd below. $L$, set of lb of $B$.

Then $^\exists \alpha = \sup L \in S$, $\alpha = \inf B$ (i.e. lubp $\Rightarrow$ glbp)

pf. 

더보기

$B$, bdd below $\Rightarrow$ $L$, nonempty.

$^\forall y \in L, ^\forall x \in B, y \leq x \Rightarrow x$, ub of $L$

$\therefore L$, bdd above. $^\exists \alpha = \sup L$

$^\forall y \in L, y \leq \alpha, ^\forall x \in B, \alpha \leq x (\because x,$ ub of $ L)$

$\therefore \alpha = \inf B$  $_\blacksquare$

Section 2. Real Fields

Thm 1.2.1 Existance Theorem

Ordered field $\mathbb{R}$ with lubp s.t. $\mathbb{R} \supset \mathbb{Q}$, as a subfield exists.

sketch of pf.

더보기

Step 1. Define a 'cut'.

$\alpha \subset \mathbb{Q}$ is a cut if

(1) $\alpha \neq \phi, \mathbb{Q}$

(2) $p \in \alpha, q \in \mathbb{Q}, q < p \Rightarrow q \in \alpha$

(3) $p \in \alpha \Rightarrow ^\exists r \in \alpha$ s.t. $p < r$

 

Step 2. Define $\alpha < \beta$ if $ \alpha \subsetneq \beta$.

Then $<$ is an order, thus a set of cuts $R$ is an ordered set.

 

Step 3. Prove $R$ has lubp.

 

Step 4-7. Prove $R$ is a field.

Define $\alpha + \beta$ as a set of all sums of $r \in \alpha, s \in \beta$.

Define muliplication carefully. (First consider multi between positive, then other cases.)

Let's denote a cut $\{p \in \mathbb{Q}| p < r\}$ as $r^*$.

prove $\langle R, +, \cdot \rangle$ with add/muti id $0^*, 1^*$ is a field.

 

Step 8-9. Define $Q:=\{r^* | r \in \mathbb{Q}\}$. $Q$ is a subfield of $R$ and isomorphic to $\mathbb{Q}$.

Thus there exists some $\mathbb{R}$ satisfies such conditions. $_\blacksquare$

 

Thm 1.2.2 Let S be an ordered set s.t. bdd above. Let $\alpha = \sup S$.

Then $^\forall \epsilon > 0, ^\exists x \in S$ s.t. $\alpha-\epsilon < x \leq \alpha$.

pf.

더보기

Spse not. Then $\alpha - \epsilon$ is ub, which is a contradiction. $_\blacksquare$

Similar prop holds for infimum.

 

Thm 1.2.3 Archimedean property.

(1) $x,y \in \mathbb{R}, x>0 \Rightarrow ^\exists n \in \mathbb{N}$ s.t. $nx > y$

(2) $x,y \in \mathbb{R}, x<y \Rightarrow ^\exists p \in \mathbb{Q}$ s.t. $x < p < y$

pf. 

더보기

(1) spse not.

Then $S=\{nx| n \in \mathbb{N}\}$ is bdd above. i.e. $^\exists \alpha = \sup S$.

By Thm 2.2, $^\exists m \in \mathbb{N}$ s.t. $\alpha - x < mx \leq \alpha$.

Then $(m+1)x > \alpha$, which is a contradiction.

 

(2) Let $n$ be a positive integer s.t. $n(y-x) > 1$. i.e. $x + \frac{1}{n} < y$.

Let $S=\{\frac{k}{n}| k \in \mathbb{N}, \frac{k}{n} < x\}$. $S$ is bdd above since $x$ is an ub. Let $\alpha=\sup S$.

By Thm 2.2, $^\exists m \in \mathbb{N}$ s.t. $x - \frac{1}{n} < \frac{m-1}{n} \leq x$.

Then $x < \frac{m}{n} \leq x + \frac{1}{n} < y$. $_\blacksquare$

 

Thm 1.2.4 Ordered field with lubp is unique.

 

sketch of pf.

더보기

Let $F, G$ be ordered fields with lubp.

Define $n \cdot 1_F$ as a $n$-sum of $1_F$, $\frac{m}{n} \cdot 1_F = (m \cdot 1_F) (n \cdot 1_F)^{-1}$ (Similar in $G$)

Let $f:F \rightarrow G, x \mapsto \sup\{p \cdot 1_G | p \in \mathbb{Q}, p \cdot 1_F < x\}$. Define $g: G \rightarrow F$ similarly.

Then $g$ is an inverse of $f$, thus $f$ is bijective.

Prove that $^\forall x, y \in F, f(x+y)=f(x)+f(y), f(xy)=f(x)f(y)$ using Archimedean property.

Prove that $f(P_F)=f(P_G)$ where $P_F$ is a positive set of $F$.

Thus $f$ is an isomorphism. $_\blacksquare$

 

Thm 1.2.5 $^\forall x \in \mathbb{R}, x>0, n \in \mathbb{N}, ^{!\exists} y \in \mathbb{R}$ s.t. $y^n=x$

pf.

더보기

Let $A={a \in \mathbb{R}^+ | a^n < x}$.

Let $t=\frac{x}{1+x}$. Then $t^n < t < x, t \in A$. $\therefore A \neq \phi$.

Let $t=1+x$. Then $t^n > t > x$. $\therefore A$, bdd above.

$^{!\exists} y = \sup A, y > 0$.

Note that if $0<a<b, b^n - a^n = (b - a)(b^{n-1}+b^{n-2}a+ \cdots + a^{n-1}) < (b-a)nb^{n-1}$.

(i) Spse $y^n < x$.

Let $h = \min \{1, \frac{x-y^n}{n(y+1)^{n-1}} \}$.

$y^n < (y+h)^n < y^n + hn(y+h)^{n-1} \leq y^n+hn(y+1)^{n-1} \leq x$.

i.e. $y+h \in A$. Contradicts.

(ii)Spse $y^n > x$.

Let $k=\frac{y^n-x}{ny^{n-1}}$. $0<k<y$.

$y^n > (y-k)^n > y^n - kny^{n-1} = x$.

i.e. $y - k$, ub of $A$. Contradicts.

$\therefore y^n=x$ and unique.

 

Note. If you want to prove this, expand $(y+h)^n$ or $(y-k)^n$ and restrict $h$ or $k$ properly to get what you want.

 

Def 1.2.1 The Extended Real Number System

$\mathbb{R} \cup \infty \cup -\infty$ with original order in $\mathbb{R}$ and $^\forall x \in \mathbb{R} -\infty < x < \infty$.

 

Section 3. The Complex Field.

Def 1.3.1 Complex Number

is an ordered pair $(a, b), a, b \in \mathbb{R}$ with

$^\forall x=(a,b), y=(c,d), x+y=(a+c, b+d), xy=(ac-bd, ad+bc)$.

 

Thm 1.3.1 The set of complex numbers is a Field. $\mathbb{C}$.

 

Def 1.3.2 $i=(0, 1)$.

Thm 1.3.2 $i^2=-1, (a, b)=a+bi$

 

Def 1.3.3 $z=a+bi \in \mathbb{C}$. $\overline{z}=a-bi$, conjugate of z. $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$.

 

Thm 1.3.3

(1) $\overline{z+w}=\overline{z}+\overline{w}$

(2) $\overline{zw}=\overline{z} \cdot \overline{w}$

(3) $z + \overline{z} = 2\operatorname{Re}(z), z - \overline{z} = 2\operatorname{Im}(z)$

(4) $z\overline{z} \in \mathbb{R}, z \neq 0 \Rightarrow z\overline{z} > 0$

 

Def 1.3.4 $|z|=\sqrt{z\overline{z}}$

 

Thm 1.3.5

(1) $|z| > 0$ if $z \neq 0, |0|=0$

(2) $|\overline{z}|=|z|$

(3) $|zw|=|z||w|$

(4) $|\operatorname{Re}(z)| \leq |z|$

(5) $|z+w| \leq |z| + |w|$

 

Thm 1.3.6 $|\sum{a_j\overline{b_j}}| \leq \sum{|a_j|^2} \sum{|b_j|^2}$ (CBS ineq in complex field)

pf.

더보기

Let $A=\sum{|a_j|^2}, B=\sum{|b_j|^2}, C=\sum{a_j\overline{b_j}}$.

$\begin{align} \sum{|Ba_j-Cb_j|^2} &= \sum{(Ba_j-Cb_j)(\overline{Ba_j-Cb_j})} \\&= \sum{(Ba_j-Cb_j)(B\overline{a_j}-\overline{Cb_j})} \\&= \sum{B^2|a_j|^2+|C|^2|b_j|^2-B\overline{C}a_j\overline{b_j}-BC\overline{a_j}b_j} \\&= B^2A+|C|^2B-B|C|^2-B|C|^2 \\&= B^2A-B|C|^2 \\&\geq 0\end{align}$

$\therefore |C|^2 \leq AB$. $_\blacksquare$

 

References

Rudin, W. (1976). Principles of mathematical analysis (Vol. 3). New York: McGraw-hill.

김성기, 김도한, 계승혁. (1995). 해석개론 (제2개정판). 서울: 서울대학교출판문화원

Comments